1,898 research outputs found

    Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon: the role of carrier generation and relaxation processes

    Full text link
    The formation of laser-induced periodic surface structures (LIPSS, ripples) upon irradiation of silicon with multiple irradiation sequences consisting of femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied numerically using a rate equation system along with a two-temperature model accounting for one- and two-photon absorption and subsequent carrier diffusion and Auger recombination processes. The temporal delay between the individual equal-energy fs-laser pulses was varied between 00 and 4\sim 4 ps for quantification of the transient carrier densities in the conduction band of the laser-excited silicon. The results of the numerical analysis reveal the importance of carrier generation and relaxation processes in fs-LIPSS formation on silicon and quantitatively explain the two time constants of the delay dependent decrease of the Low-Spatial-Frequency LIPSS (LSFL) area observed experimentally. The role of carrier generation, diffusion and recombination are quantified individually.Comment: 5 pages, 5 figures, Conference On Laser Ablation (COLA) 2013. The final publication is available at http://link.springer.com. Accepted for publication in Applied Physics

    Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon

    Full text link
    The mechanisms of ripple formation on silicon surface by femtosecond laser pulses are investigated. We demonstrate the transient evolution of the density of the excited free-carriers. As a result, the experimental conditions required for the excitation of surface plasmon polaritons are revealed. The periods of the resulting structures are then investigated as a function of laser parameters, such as the angle of incidence, laser fluence, and polarization. The obtained dependencies provide a way of better control over the properties of the periodic structures induced by femtosecond laser on the surface of a semiconductor material.Comment: 11 pages, 8 figures, accepted for publication in Journal of Applied Physic

    Describing general cosmological singularities in Iwasawa variables

    Full text link
    Belinskii, Khalatnikov, and Lifshitz (BKL) conjectured that the description of the asymptotic behavior of a generic solution of Einstein equations near a spacelike singularity could be drastically simplified by considering that the time derivatives of the metric asymptotically dominate (except at a sequence of instants, in the `chaotic case') over the spatial derivatives. We present a precise formulation of the BKL conjecture (in the chaotic case) that consists of basically three elements: (i) we parametrize the spatial metric gijg_{ij} by means of \it{Iwasawa variables} βa,Nai\beta^a, {\cal N}^a{}_i); (ii) we define, at each spatial point, a (chaotic) \it{asymptotic evolution system} made of ordinary differential equations for the Iwasawa variables; and (iii) we characterize the exact Einstein solutions β,N\beta, {\cal{N}} whose asymptotic behavior is described by a solution β[0],N[0]\beta_{[0]}, {\cal N}_{[0]} of the previous evolution system by means of a `\it{generalized Fuchsian system}' for the differenced variables βˉ=ββ[0]\bar \beta = \beta - \beta_{[0]}, Nˉ=NN[0]\bar {\cal N} = {\cal N} - {\cal N}_{[0]}, and by requiring that βˉ\bar \beta and Nˉ\bar {\cal N} tend to zero on the singularity. We also show that, in spite of the apparently chaotic infinite succession of `Kasner epochs' near the singularity, there exists a well-defined \it{asymptotic geometrical structure} on the singularity : it is described by a \it{partially framed flag}. Our treatment encompasses Einstein-matter systems (comprising scalar and p-forms), and also shows how the use of Iwasawa variables can simplify the usual (`asymptotically velocity term dominated') description of non-chaotic systems.Comment: 50 pages, 4 figure

    Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon

    No full text
    International audienceThe formation of near-wavelength laser-induced periodic surface structures (LIPSS) on silicon upon irradiation with sequences of Ti:sapphire femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied theoretically. For this purpose, the nonlin-ear generation of conduction band electrons in silicon and their relaxation is numerically calculated using a two-temperature model approach including intrapulse changes of optical properties, transport, diffusion and recombina-tion effects. Following the idea that surface plasmon polaritons (SPP) can be excited when the material turns from semiconducting to metallic state, the "SPP active area" is calculated as function of fluence and double-pulse de-lay up to several picoseconds and compared to the experimentally observed rippled surface areas. Evidence is presented that multi-photon absorption explains the large increase of the rippled area for temporally overlapping pulses. For longer double-pulse delays, relevant relaxation processes are identified. The results demonstrate that femtosecond LIPSS on silicon are caused by the excitation of SPP and can be controlled by temporal pulse shaping. ©2013 Optical Society of America OCIS codes: (050.6624) Subwavelength structures; (140.3390) Laser materials processing; (160.6000) Semiconductor materials; (240.5420) Polaritons

    Runaway dilaton and equivalence principle violations

    Full text link
    In a recently proposed scenario, where the dilaton decouples while cosmologically attracted towards infinite bare string coupling, its residual interactions can be related to the amplitude of density fluctuations generated during inflation, and are large enough to be detectable through a modest improvement on present tests of free-fall universality. Provided it has significant couplings to either dark matter or dark energy, a runaway dilaton can also induce time-variations of the natural "constants" within the reach of near-future experiments.Comment: 4 pages, minor change

    Type I interferon receptor controls B-cell expression of nucleic acid-sensing Toll-like receptors and autoantibody production in a murine model of lupus

    Get PDF
    INTRODUCTION: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of high-titer IgG autoantibodies directed against nuclear autoantigens. Type I interferon (IFN-I) has been shown to play a pathogenic role in this disease. In the current study, we characterized the role of the IFNAR2 chain of the type I IFN (IFN-I) receptor in the targeting of nucleic acid-associated autoantigens and in B-cell expression of the nucleic acid-sensing Toll-like receptors (TLRs), TLR7 and TLR9, in the pristane model of lupus. METHODS: Wild-type (WT) and IFNAR2-/- mice were treated with pristane and monitored for proteinuria on a monthly basis. Autoantibody production was determined by autoantigen microarrays and confirmed using enzyme-linked immunosorbent assay (ELISA) and immunoprecipitation. Serum immunoglobulin isotype levels, as well as B-cell cytokine production in vitro, were quantified by ELISA. B-cell proliferation was measured by thymidine incorporation assay. RESULTS: Autoantigen microarray profiling revealed that pristane-treated IFNAR2-/- mice lacked autoantibodies directed against components of the RNA-associated autoantigen complexes Smith antigen/ribonucleoprotein (Sm/RNP) and ribosomal phosphoprotein P0 (RiboP). The level of IgG anti-single-stranded DNA and anti-histone autoantibodies in pristane-treated IFNAR2-/- mice was decreased compared to pristane-treated WT mice. TLR7 expression and activation by a TLR7 agonist were dramatically reduced in B cells from IFNAR2-/- mice. IFNAR2-/- B cells failed to upregulate TLR7 as well as TLR9 expression in response to IFN-I, and effector responses to TLR7 and TLR9 agonists were significantly decreased as compared to B cells from WT mice following treatment with IFN-alpha. CONCLUSIONS: Our studies provide a critical link between the IFN-I pathway and the regulation of TLR-specific B-cell responses in a murine model of SLE

    Analisis Kebutuhan Parkir Pada Rumah Sakit Umum Kelas B Di Kota Semarang

    Full text link
    Parking is one of the important elements of urban transportation, such, it has various long and short-term impacts on individuals, societies, and transportation systems. It affects to the transportation mode selection. People tend to drive private car when the representative parking area is available. This research is focused at the determination of the parameters that affect the use of parking area. The parameters are expected to be useful in estimating the parking area demand of the hospital class B in Semarang. There are six major parameters describing the parking slot, i.e.: accumulation, parking volume, total spaces available (capacity), parking turnover, peak time, duration of occupancy and occupancy. Three hospitals are selected as object of the study; there are RS Telogorejo, RS Elisabeth and RS dr Kariadi. The survey is carried out by direct investigation and questionnaire. Statistical analysis by using linear regression, logarithmic, quadratic, and exponential, indicated that the amount of bed used has a very high correlation with the parking demand. The next highest correlation is observed between medical specialist and parking demand. The average duration in RS Telogorejo is 15 – 30 minutes, RS Elisabeth is 30 minutes – 2 hours, and RS dr Kariadi is 15 – 30 minutes for car. For motorcycle, the average duration in RS Telogorejo is 30 minutes – 1 hour, RS Elisabeth is 30 minutes – 2 hours, and RS dr Kariadi is above 4 hours. From the study, it was found that the ratio between parking demand for vehicle and the number of bed being used is 0.89, meanwhile the ratio between parking demand for motorcycle and the number of bed being used is 1.29. Other alternative of parking facility like special parking building area is recommended to be considered for the hospital with limited area

    A New WIMP Population in the Solar System and New Signals for Dark-Matter Detectors

    Full text link
    We describe in detail how perturbations due to the planets can cause a sub-population of WIMPs captured by scattering in surface layers of the Sun to evolve to have orbits which no longer intersect the Sun. We argue that such WIMPs, if their orbit has a semi-major axis less than 1/2 of Jupiter's, can persist in the solar system for cosmological timescales. This leads to a new, previously unanticipated WIMP population intersecting the Earth's orbit. The WIMP-nucleon cross sections required for this population to be significant are precisely those in the range predicted for SUSY dark matter, lying near the present limits obtained by direct underground dark matter searches using cyrogenic detectors. Thus, if a WIMP signal is observed in the next generation of detectors, a potentially measurable signal due to this new population must exist. This signal, lying in the keV range for Germanium detectors, would be complementary to that of galactic halo WIMPs. A comparison of event rates, anisotropies, and annual modulations would not only yield additional confirmation that any claimed signal is indeed WIMP-based, but would also allow one to gain information on the nature of the underlying dark matter model.Comment: Revtex, 37 pages including 6 figures, accepted by Phys. Rev D. (version to be published, including changes made in response to referees reports
    corecore